MANUFACTURING OF LARGE-AREA CUINS₂ SOLAR MODULES – FROM PILOT TO MASS PRODUCTION

Axel Neisser Sulfurcell Solartechnik GmbH Groß-Berliner Damm 149, D-12487 Berlin, Germany

- **1991 2001** Hahn-Meitner-Institut Berlin takes lead in thin-film technology based on Copper-Indium-Sulfide (CIS)
- **April 2003** Launch of HMI spin-off Sulfurcell (EUR 16m financing closed)
- July 2004 Plant begins operation
- **July 2005** Scale-up of CIS technology completed (5 x 5 \Rightarrow 125 x 65 cm²), prototype presented to public
- Dec 2005 Market entry
- 2005 2008 Continuous improvement of key performance indicators up to a run rate of 2.5 MW/a / 80 % yield
- **Jul 2008** 75 MW expansion started (EUR 85m of equity raised)
- **Nov 2009** First CIS modules from 75 MW line

Sulfurcell's 75 MW production facility CIS-Line

Dimension

- > 16.000 m² production
- > 3.000 m² offices

BIPV

- > 700 facade-integrated CIS modules
- > PV test field + 300 kW PV power plant on roof

Sulfurcell serves the market with high-quality products with a focus on building integrated photovoltaics (BIPV)

SULFURCELL'S PRODUCT PORTFOLIO

Framed modules

- Max. mechanical load (4800 kPa/m²) Optimized for minimum costs
- Applicable as cladding element

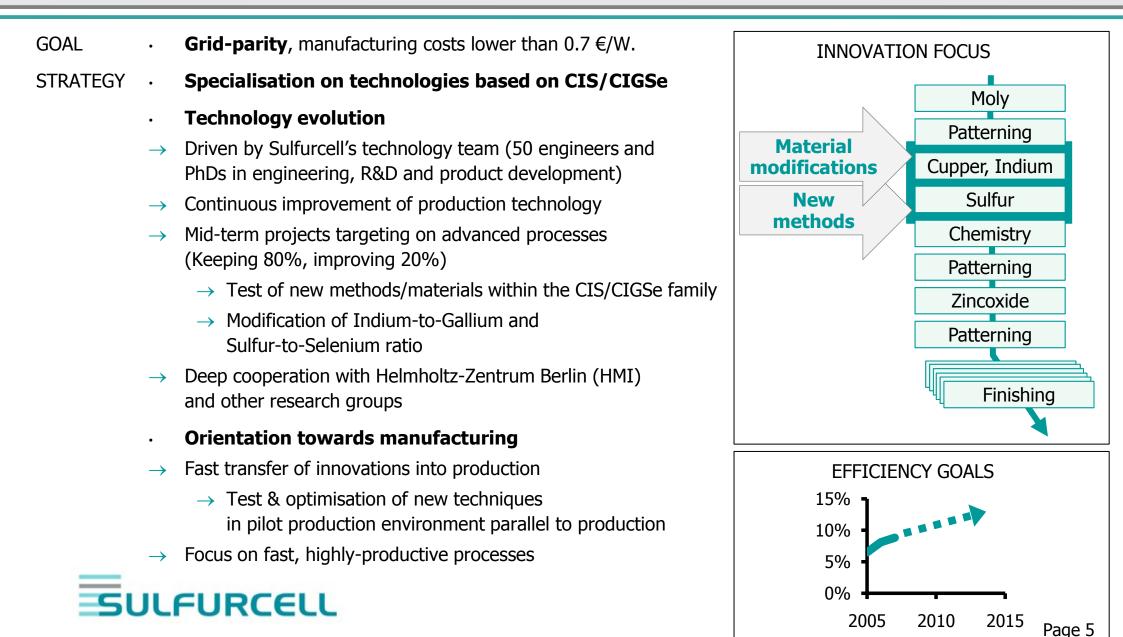
Frameless modules

- Excellent self-cleaning

Modules for roof integration

- Aesthetic excellence
- Replacing roof tile (rainproof)

OUALITY

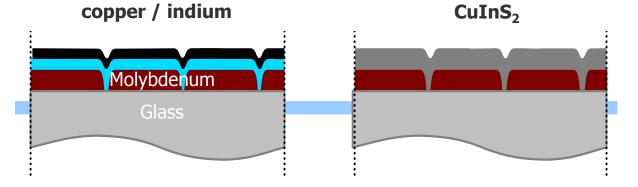

All products passed accelerated life-time tests (IEC 61646) and are certified by German TÜV

SULFURCELL

Sulfurcell's technology roadmap towards high-efficiencies and lowest costs

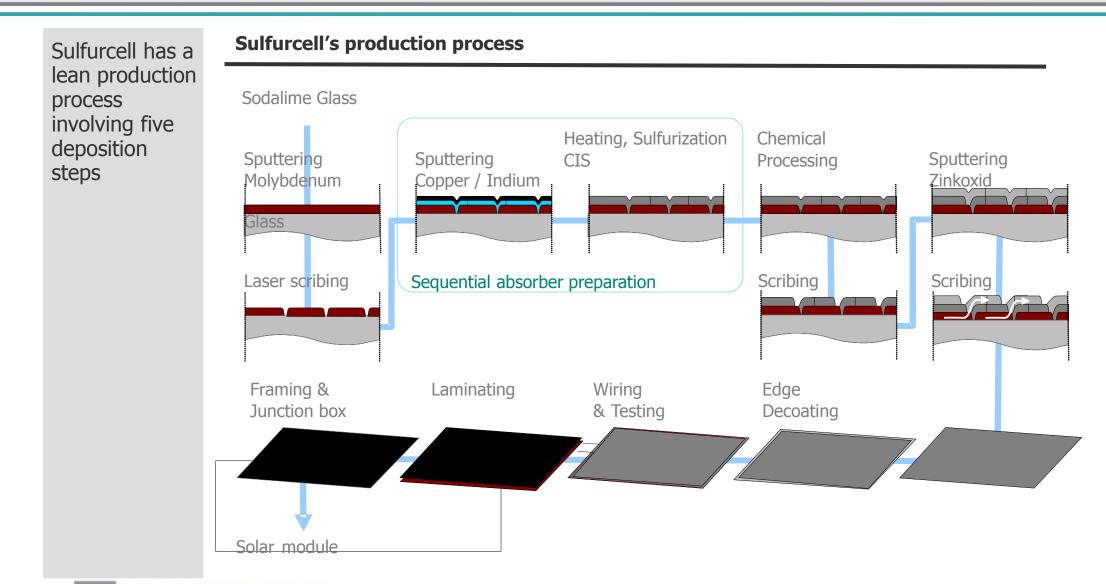
Sulfurcell's Technology

Sulfurcell takes advantages from a sequential preparation process for CuInS₂


Formation of CuInS₂

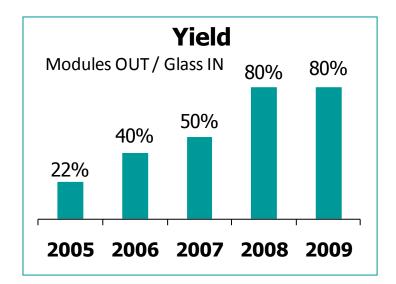
Needs

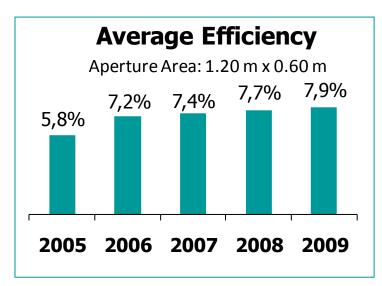
- Deposit of copper, indium and sulfur
- Compound copper, indium and sulfur (activated at 500 °C)
- Build polycrystalline layer


Sulfurcell's approach

- Sputtering of copper and indium (precursor)
 - $\rightarrow\,$ to avoid high-temperature processes for metal deposition
 - \rightarrow to achieve reasonable machine costs
- Rapid thermal annealing of copper and indium under sulfur atmosphere
 - $\rightarrow\,$ to benefit from high reactivity of sulfur
 - $\rightarrow \,$ to achieve short cycle-time
- Use Cu-rich precursor (Cu:In > 1)
 - \rightarrow to benefit from copper accelerating growth and enhancing crystal quality

Sulfurcell's technology





Learning curves of key performance indicators

Key performance indicators

- start of 24/7 operation in Oct 07
- > run rate since Jul 08 of 2.5 MW/a
- yield stabilized in Q1/08 at 80%
- > continuous improvement of module power

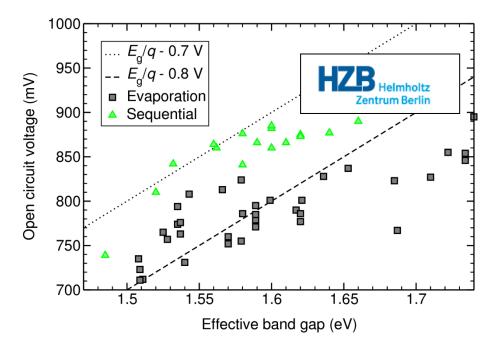

CIS module development

R&D top four in 2008/2009:

- production-line stability issues
- bulk absorber properties
- CIS/CdS/ZnO interface issues
- active area / patterning

Module power development

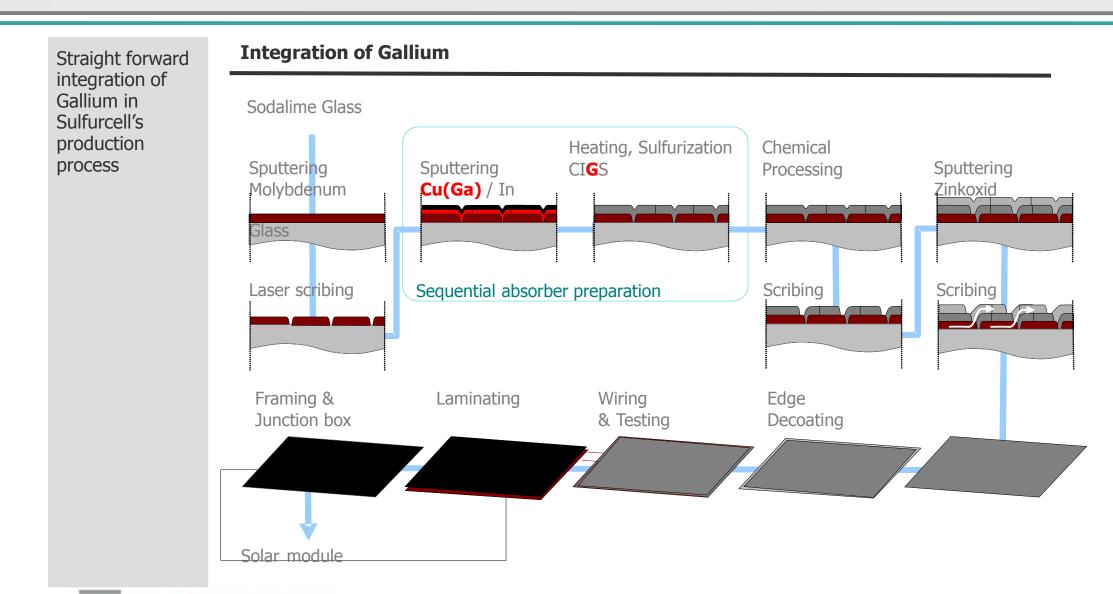
- best CIS modules reach 9% active area efficiencies.
- average quarterly module power reached 60Wp (=8,2%) in Q4/09
- narrowed power distribution down to a FWHM of only 2,2 W



Integration of Gallium

Incorporation of Gallium has been shown to be a successful way in increasing the efficiency of small area laboratory cells

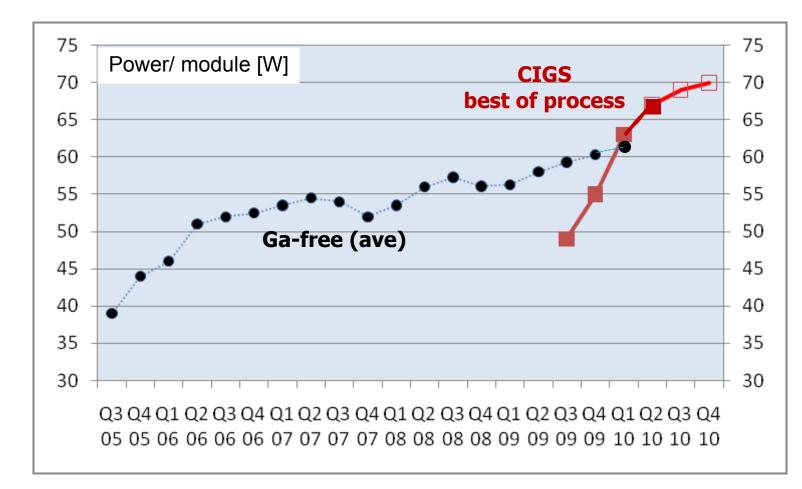
	Eg [eV]	Eff [%]	Voc [mV/cell]	FF [%]	Jsc [mA/cm ²]	
CIS	1.5	11.4	730	71.7	21.8	Ga-free reference
CIGS	1.56	13.0	864	64.0	23.4	active area, w AR
CIGS	1.60	12.7	885	71	20.2	active area, w/o AR
CIGS	1.60	12.0	865	69	20.0	total area, w AR, NREL certified
CIGS	1.65	11.5	890	64	20.0	active area, w AR


Source: Reiner Klenk, Helmholtz-Zentrum Berlin für Materialien und Energie

E_a derived from external quantum efficiency measurements

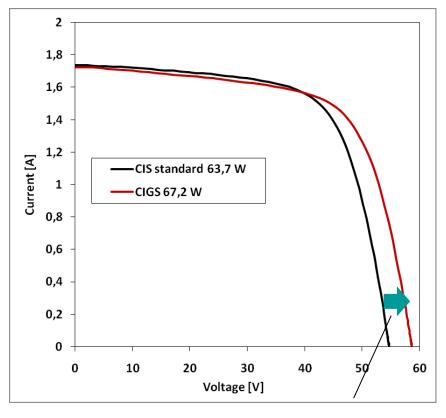
S.Merdes , R.Kaigawa J.Klaer R.Klenk, R.Mainz A.Meeder N.Papathanasiou D.Abou-Ras S.Schmid, Proc. 23rd EU-PVSEC, Valencia, 1-5 September 2008 (2008) S.Merdes, B.Johnson R. Saez-Araoz A.Ennaoui J.Klaer I.Lauermann R.Mainz A.Meeder R.Klenk, Mater. Res. Soc. Symp. Proc. Vol. 1165 1165-M05-15 (2009) S.Merdes , R.Saez-Araoz A.Ennaoui J.Klaer M.Ch.Lux-Steiner R.Klenk, Appl. Phys. Lett. 95 p.213502 (2009)

S. Merdes, R. Mainz, J. Klaer, A. Meeder, H. Rodriguez-Alvarez, H. W. Schock, M. Ch. Lux-Steiner and R. Klenk, Sol. En. Mat. Sol. Cells, submitted


CIGS technology integration

Status of Gallium project

- Steady increase in module power since start of process development on large area
- Latest results 3W better than standard Ga-free process


Current project status

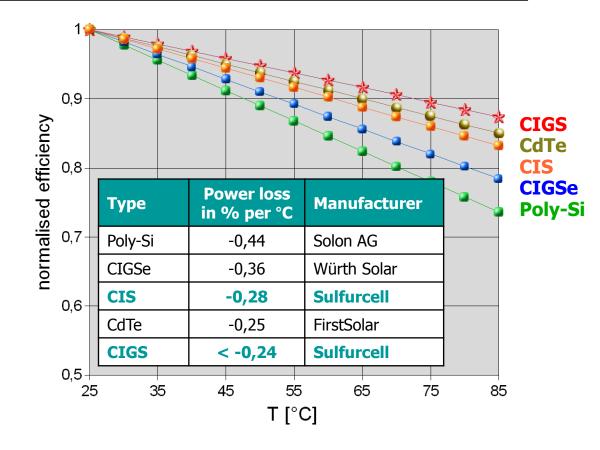
- > Process will be ready for production in June
- Best modules show 67W module power

Comparison of small area reference cells

technology	C	IS	CIGS		
process	lab	prod	lab	prod	
area [sqcm]	0.5				
Eff [%]	11,4 ^[1]	10,4	> 13	> 11,5	
Voc [mV/cell]	730	700	> 860	> 780	
FF [%]	71,7	71	69	71	
Jsc [mA/cm ²]	21,8	21	22	21	

Comparison of Ga to Ga-free module

Higher voltage per module due to Gallium incorporation



Sulfurcell's Gallium-technology shows very low temperature coefficient

Comparison of T-coefficient of various PV technologies

Very low temperature coefficient

- Observation of lowest temperature coefficient of all PV technologies besides amorphous
- Low temperature coefficient promises high performance on a kWh per kW basis in warmweather regions (e.g. 8 % more than poly-Si at 65 °C)

Continuous quality control – a daily in-house

Accelerated life-time test – Sulfurcell resources

- Damp heat test
- Dry heat test
- UV test
- Mechanical load and deformation test
- Light-soaking test

System test

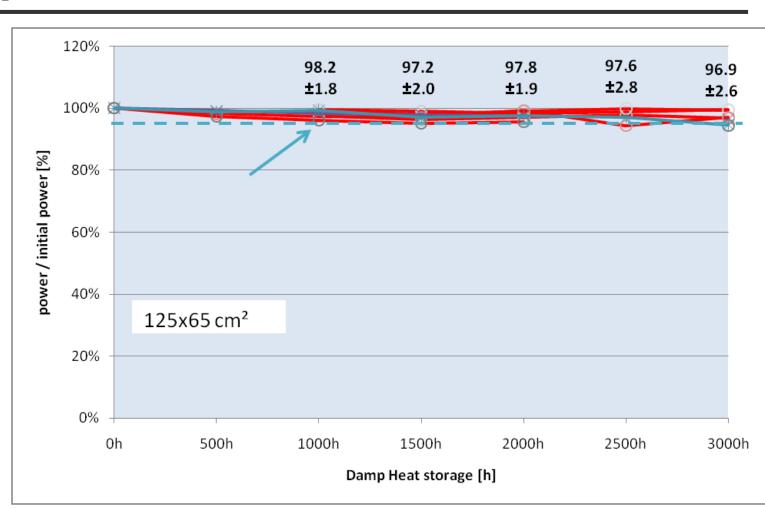
- Monitoring of PV-test systems
- Qualification of inverters and mounting systems

Extended in-house testing program at Sulfurcell:

- 3000 h damp heat
- 30 cycles humidity freeze
- damp heat under bias,
- mechanical load under torsion

Extended testing program in coop. with externals:

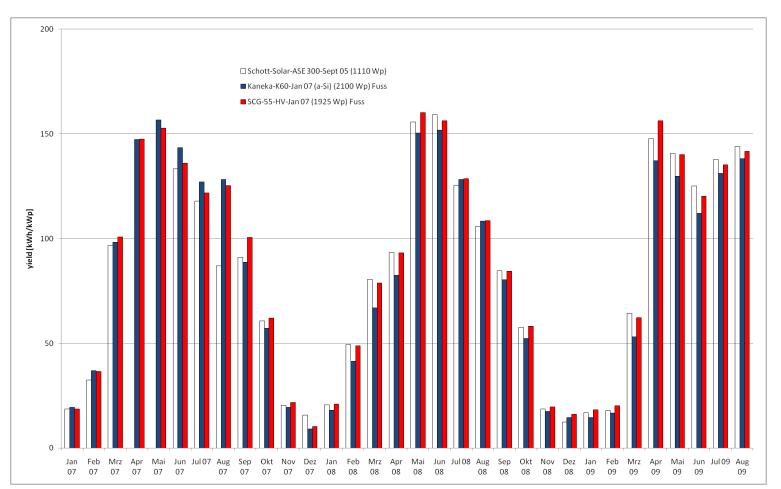
- 500ppm NH3-atmosphere according to DIN50916:1985,
- Salt-mist corrosion test according to IEC61701:1995
- Hail impact test



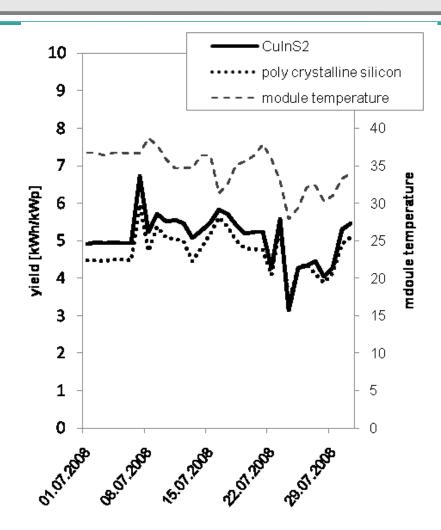
Product stability

Encapsulation of CuInS₂ modules

- Improvement of encapsulation has lead to an outstanding damp heat stability of Sulfurcell's products
- Today damp heat stability exceeds the IEC standard by three times
- Sulfurcell products have passed the IEC61646 certification procedure at TÜV Rheinland



Comparison of outdoor performance of c-Si, a-Si and CIS


- stable and reliable performance over 3 years of outdoor experience.
- energy yield of c-Si and CIS comparable.
- CIS does not show any lightinduced degradation effects.
- oudoor results have been confirmed by numerical simulations using the PV-Sol software

(location of 3 x 1 kWp pv installation: Berlin, Germany)

CIS outdoor performance experience

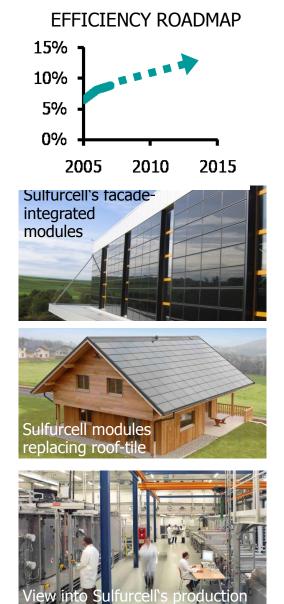
systems are installed on the same site in Rizoma near Trikala, Greece

Comparison of c-Si and CIS in hot climates

numerical simulations using the PV-Sol software confirm our oudoor results:

Simulated specific energy yield $[kWh/kW_p a]$ of a CuInS₂ PV system and a c-Si system.

	CuInS ₂	c-Si	
Temperature coeff.	0.28%/K	0.48%/K	
Spec. energy yield Berlin, Germany Rome, Italy Madrid, Spain Cairo, Egyt	925 1478 1492 1772	891 1396 1401 1652	


TECHNOLOGY

- Application of proprietary CIS-based technology.
- Long-years track record in industrial application of CIS: Sulfurcell modules shipped and sold, 2.5 MW/a manufacturing rate.
- 220 staff with 30 in-house CIS-specialists. Alliance with Europe's leading research institute on thin-film PV (Helmholtz Centre Berlin).
- 75MW line has been installed in 2009, will reach stage one capacity of 35MW in mid 2010

PRODUCTS

- Sulfurcell products are designed and equipped for building integration.
- The high quality standard is certified by TÜV Rheinland (IEC 61646).

SULFURCELL

