

Manufacturing of Large-Area Cu(In,Ga)Se₂ Solar Modules Fast Ramp Up to More than 12% Module Efficiency in Mass Production – Road Map to 14%

A. Neisser et. al., Soltecture, Berlin, Germany

SOLAR CONSTRUCTION SUSTAINABILITY TECHNOLOGY

3CO.2.3 | Neisser et al | 7 Sep 2011 | 26th EUPVSEC Hamburg

Sulfurcell is now Soltecture

Soltecture: Passion for CIS since 1991 and more than 200 years of combined CIS experience

Lab at Helmholtz Center

Soltecture's pilot production

Soltecture's 35 MW facility

1991 – 2001	Helmholtz-Center Berlin (HZB) takes lead in thin-film technology based on CIGS
2001	Founding of Sulfurcell Solartechnik GmbH
2004	Pilot production facility ready for production
Dec 2005	Market entry
Apr 2010	35 MW facility ready for production

More than 200 years of combined CIS experience in Soltecture's staff of 50 highly qualified engineers

Latest result: Incorporation of Gallium into Soltectures sequential technology

Soltecture's has successfully qualified an improved Gen1 process enhancing module power from 60 W to 70 W in average

SOLTECTURE

New world record for Selenium free modules in production

Incorporation of Gallium

- Soltecture has introduced Gallium in its sequential technology, hereby increasing module power to more than 70W in production
- Best modules reach 10.0% aperture area efficiency
- Highest value for selenium free large area module

PV parameters of Cu(In,Ga)S₂ champion module

Pmp	eta	Voc	lsc	ff
74.6 W	10.0 %	60.1V	1.76 A	70.5 %
		732mV/cell	19.4mA/cm2	

Aperture area: 1.215 x 0.615m²

Soltecture's efficiency roadmap continues the company's historic achievements

Soltecture's technology platform for CIGS & CIGSe: Modules with premium performance and top efficiency

Sulfurcell's manufacturing process for CIGSe PV modules (Gen2)

The coevaporation technology

*Molybdenum-coated glass (1.25 x 0.65 m²)

Technique

- Simultaneous evaporation of the elements Cupper, Indium, Gallium and Selenium
 - \Rightarrow Formation of CIGSe on glass substrates passing the evaporation sources
- Optimisation of film composition by adjusting evaporation rates and temperature

Features of the machine design

- Material usage rate as high as for sputtering (> 40%)
- Stable operation over several days (no drift, no glass breakage, total yield > 80%)
- Excellent homogeneity of film composition: Cu:(In+Ga): ± 2.5%
- Excellent CIGSe quality: 15% efficiency of solar cells cut out of fullscale modules
- High productivity (4 min cycle-time, roadmap to < 2 min)

RAMP UP

3CO.2.3 | Neisser et al | 7 Sep 2011 | 26th EUPVSEC Hamburg

Project Plan for Introduction of GEN 2 technology fulfilled

Rapid learning curve demonstrates good process understanding and control

Evolution of module power

> 80W (>10.7%) after 4 month of process development

Continous steady progress towards 100W (13.4%)

Soltecture technology allows for very tight control of layer composition – key for further performance improvements

SOLTECTURE

CIGSe composition optimisation

Topic:

Dependence of module power on elemental ratios Cu/(Ga+In) & Ga/(Ga+In)

Solution:

Optimisation of source parameters to define optimum setpoints for CIGSe runs:

- Precise source control and stability allow straight-forward optimisation
- Setpoints for Cu/(Ga+In) & Ga/(Ga+In) defined

CIGSe-coater (Gen2) achieves excellent uniformity of +/- 2% across individual substrates

Good uniformity in composition leads to good uniformity in electrical performance

Homogeneity of metal ratios along substrate length

- measured by XRF
- Uniformity across substrate +/- 2%
- Very homogeneous electroluminescence image of large area modules

Best module from Soltecture production line generates 98W = 13.1 % app. area efficiency

PV data of best module

- taken from Soltecture production line
- aperture area = $0.75m^2$
- number of cells = 123
- 12.6 % externally confirmed (different module)

Pmp	eta	Voc	lsc	ff
98.2 W	13.14 %	72.8V	1.89 A	71.3 %
		592mV/cell	31,3mA/cm2	

CIGSe-coater (Gen2) achieves excellent long term stability of coating conditions

Composition of CIGSe layers on 125 cm x 65 cm sized substrates during 36 h of continuous operation run (measured by XRF) \rightarrow Excellent substrate to substrate uniformity – key to successful scale up

Soltecture's gen2 process has proven excellent process stability and narrow power distribution

SOLTECTURE

3CO.2.3 | Neisser et al | 7 Sep 2011 | 26th EUPVSEC Hamburg

Evolution of Yield during ramp up of first coevaporation tool

Current Yield analysis sorted by production line section

- Total first pass yield > 80% level
- Electrical yield higher than 97%
- Back end yield constantly in the 97-98% range
- Front end yield P2/ZnO/P3: half of rejects due to CIGSe absorber issues
- By minimizing the number of rejects at coevaporation tool alone yield will improve by 7%
- By minimizing all other absorber related detractors, yield will improve to >95% level

Section	Yield
Front End w/o CIGSe	95%
CIGSe	93%
IV out of spec	98%
Back End	97%
Total	84%

Lessons learned during ramp up

Conclusions

- Ramp up of our new absorber technology to > 10% modules in less than 20 weeks
- Ramp up of yield to more than 80% in less than a year
- due to high synergy effects between Gen01 and Gen02 technology
- Production stability and quality assurance in CIS manufacturing require:
 - CIS related expertise of the manufacturer's technology team
 - Production experience with CIS-based technology
 - Scientific support
 - Industrial knowledge
- → there is no turn key CIS technology yet, Soltecture and it's team combines more the 200 person years of CIS experience and more than 5 years in continuous production –> prerequisite for fast ramp up

PRODUCT QUALIFICATION

3CO.2.3 | Neisser et al | 7 Sep 2011 | 26th EUPVSEC Hamburg

Accelerated life-time test

- Damp heat test
- Dry heat test
- Thermal cycling test
- Humidity-Freeze test
- UV irradiation
- Mechanical load and deformation test
- Light-soaking test

Thin-film analysis

- Electrical and optical analysis (a.o. Raman, PL)
- Microscopic analysis of layer structure (SEM)
- Homogeneity analysis
- X-ray analysis (XRF)

System test

- Monitoring of PV-test systems
- Qualification of inverters and mounting systems

Product qualification and certification SCG-GEN2-HV-F (CIGSe) product

Test	Internal pass criteria	Internal pass criteria External pass criteria acc. IEC61646 / IEC6173	
Mechanical load	P _{MPP} > 95% after MLT 10 modules	P _{MPP} > 90% after final lightsoaking 2 modules	
Humidity freeze test	40 cycles P _{MPP} > 95% after 40 cycles 10 modules	~	10 cycles P _{MPP} > 90% after final lightsoaking 2 modules
Damp heat test	2000h P _{MPP} > 95% after 2000h 10 modules	~	1000h P _{MPP} > 90% after final lightsoaking 2 modules
UV preconditioning	P _{MPP} > 95% after UV test 2 modules	\checkmark	P _{MPP} > 90% after final lightsoaking 2 modules
Reverse current overload test	P _{MPP} > 95% after test acccording to EN50380 5 modules	~	P _{MPP} > 95% after test acccording to EN50380 1 module
Hot-spot test	no evidence of major visual defects insulation resistance >50MΩ 5 modules	~	no evidence of major visual defects insulation resistance >50MΩ 1 module

→ SCG-GEN2-HV-F modules are qualified according to IEC61646 and IEC61730 and passed the internal higher requirements

→ confirmation by TÜV Rheinland received in June 2011

Damp heat stability of Soltecture modules exceeds the IEC standard by three times

Encapsulation of CulnS2 modules

- Improvement of encapsulation has lead to an outstanding damp heat stability of Sulfurcell's products
- Today damp heat stability exceeds the IEC standard by three times
- Sulfurcell products have passed the IEC61646 certification procedure at TÜV Rheinland

IEC 61646 received after less than a year of process and product development

UNIQUE SYSTEM SOLUTIONS

3CO.2.3 | Neisser et al | 7 Sep 2011 | 26th EUPVSEC Hamburg

Soltecture's unique flatroof solution

SOLTECTURE

Fast and easy installation

- Module carries its mounting system
 - \Rightarrow Plug and Play, tool-free installation
- No roof penetration
- No or very low requirements for additional loads

Applicable on large commercial roof-tops

- System weight and wind load at least 30% lower than for standard solutions on the market
- Unique solution for building with very low load tolerance

High energy yield

- On-roof power density comparable to c-Si solutions due to 10° slope allowing low distance between modules lines
- Very low output reduction by flat installation due to excellent performance under low insolation angles

Dependence of the power output on the insolation angle

Outlook / road mapping

3CO.2.3 | Neisser et al | 7 Sep 2011 | 26th EUPVSEC Hamburg

- The company has introduced a new one-step deposition process for high efficiency Cu(In,Ga)Se2 absorber layers based on coevaporation
- Ramp up of our new absorber technology took place in less than one year to 12.0% module efficiency, yield levels > 80% and including external certification
- Technology road map to >15% module efficiency defined and in progress
- \rightarrow Coevaporation is very well compatable with mass production

W. Eisele, A. Meeder, C. von Klopmann, N.A. Allsop, C. Camus,
P. Schmidt-Weber, D. Förster, U. Hornauer, B. Rheinhold, T.
Schubert, P. Körber, B. Wehner, T. Sokoll,

Cooperation partners:

and others

Thank you for your attention

